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Figure 1: Mesh for the electrostatic calculation with 50.0 mm solution bound-
ary radius.

This report describes calculations of a familiar example in electrostatics
and magnetostatics, the capacitance and inductance per length of a two wire
transmission line. Despite its simplicity, the example provides an opportunity
to consider the relative merits of analytic versus numerical methods. To
review, the following equations hold for bare circular wires in free space with
radius a separated by distance D:

C= Cosh_l—((’m%). (F/m) (1)

C = g cosh (D /2a). (H/m) (2)

We will use test parameters a = 4.0 mm and D = 20.0 mm. If you don’t own
an HP35s, there are many online function evaluation sites to determine that
cosh™(5) = 1.56678. The theoretical values are C' = 1.775 x 10" (F/m)
and L = 6.267"7 (H/m).



For the comparison numerical calculations, I used the two-dimensional
EStat code for the electric field calculation and PerMag for the magnetic
field. Figure 1 shows the geometry for the electrostatic solution. In order of
definition, the regions are:

1. Fixed potential elements representing a grounded boundary initially
filling the solution volume.

2. Air elements to cover a circle of radius R = 50.0 mm.

3. Dielectric elements representing the support structure for the transmis-
sion line. The condition €, = 1.0 is used to represent bare wires.

4. Elements of the lower wire with fixed potential -0.5v.

5. Elements of the upper wire with fixed potential +0.5v.

In principle, the boundary radius R should be infinite for a comparison with
the analytic results. In practice, finite-element solutions are performed over
finite volumes with defined boundaries. In this case, I have chosen a relatively
large boundary with coarser elements at a distance from the transmission
line. The element resolution at the wire is 0.5 mm. With this value, area
of wire elements calculated by the code corresponds to an effective radius of
a = 3.9948 mm.

The code can perform an integral of field energy per length (U) by sum-
ming over all elements and organizing the result by region number. For the
choice of a 1.0 V potential difference, the capacitance per length between the
wires is C' = 2U. The code result is C' = 1.852 x 107! F/m, about 4.3%
higher than the infinite-space analytic value. The question is whether the
difference results from the finite boundary or from an accuracy limitation
of the numerical method. One way to address the issue is to perform a set
of solutions with different boundary radii. This operation is relatively easy
with Mesh and EStat. To create a new Mesh input file, the original so-
lution is loaded into the Mesh Drawing Editor where the boundary circle of
the air region is deleted and replaced with a smaller circle. The automatic
task feature of EStat can them be used to run and to analyze the additional
solutions as a batch process. Figure 2 shows the results. In cases where a
quantity such as the boundary radius goes to infinity, it is better to make a
plot of the inverse of the quantity so that one of the limits is 0.0. Accord-
ingly, the figure shows the calculated capacitance versus the inverse of the
boundary radius. The boundary effect is clearly significant, and it is likely
that the calculated cacitance would approach the theoretical value with a
larger solution volume.



Ccx 10" F/m

1/R(mm’ l)

Figure 2: Capacitance per length between the wires as a function of the
inverse of the boundary radius. The dashed line shows the theoretical value.

The magnetic field calculation presents a challenge. In magnetic field
codes, the standard input is a specified current or current density distributed
over the solution volume. In the case of a high-frequency transmission line,
the current is confined over a thin layer on the wire surface. The surface
current density is not distributed uniformly, but rather in a way to maintain
the condition that the normal component of B at the surface is zero. Thus
there are two potential problems for a finite-element code:

e Very small elements would be required to represent a surface current.

e The distribution of current over the surface is not known in advance.

Fortunately, there is simple solution. We can let the code do the work of
meeting the boundary conditions. Figure 3a shows the approach. As before,
there is an inner air volume (p, = 1.0) with an outer boundary region at fixed
potential (A, = 0.0). Each wire has an inner drive region carrying £1.0 A
surrounded by a sheath has very small relative permeability, u, < 1.0. The
condition on a boundary between media with widely different p, is B, =
0.0. Therefore, the effective surface current density will have the correct



distribution for a drive current placed anywhere inside the sheath!. For the
code calculation, the value p, = 0.001 gave a good boundary distribution
without impeding solution convergence.

The inductance can be determined from a field energy integral, L =
2U. Here, we must include only the energy integral from the air region
because there is non-zero energy in the two drive regions. Figure 4 shows the
results with a fitted curve passing through the theoretical value at the origin.
As with the capacitance calculation, the absolute values are consistent with
theory and the effects of the finite boundary are significant. One conclusion is
that we must pay attention to boundaries in finite-element field calculations.
Comparisons with ideal solutions in infinite space present challenges.

On the other hand, the real world is seldom ideal and often boundaries
are a virtue. For example, suppose the transmission line passes through a
grommet in a shield wall or through a pipe. This case is easy to handle
with direct numerical methods but difficult to approach analytically, espe-
cially if the line is offset in the channel. An ezact solution would probably
involve extended series solutions. One calculation goal may be to estimate
the impedance mismatch of a feed-through. For the example, we can use the
capacitance and inductance per length to determine the impedance of the

two-wire line, Z = /L/C (Q2). Figure 5 shows the results. There is a signifi-
cant mismatch, even with a large pipe radius. This is the reason that coaxial
transmission lines are preferred, even though they are more expensive to fab-
ricate. Other geometries (e.g. non-circular pipe, displaced line, line above a
ground plane, line encased in a dielectric support,...) are easy to handle with
numerical codes, but would be almost impossible to solve analytically.

To conclude, the question is when to use numerical methods rather seek
closed-form solutions. The relative advantages depend on the context:

e Learning electromagnetism.

e Using electromagnetism for applications.

Although I create them, I feel there is little role for numerical codes in elec-
tromagnetic education. After many years teaching fields and waves, I believe
that the old-fashioned way is the best, even if it involves Smith charts. The
mathematical techniques and physical insights gained learning the subject
analytically are invaluable. In education, there are important differences
between the experience of using a good textbook and a numerical code:

LIf you are not convinced, set up a solution with a single circular sheath at the origin.
For any position of the internal drive current I, the magnetic flux density outside the
sheath is azimuthally symmetric with magnitude By = pol /27r.
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Figure 3: Magnetic field calculation. a) Mesh with 50.0 mm solution bound-
ary radius. b) Lines of magnetic field induction, with the sheaths (p, = 0.001)

highlighted.
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Figure 4: Inductance per length between the wires as a function of the inverse
of the boundary radius. The dashed line shows the theoretical value. The
solid blue line is a polynomial fit passing through the theoretical value at the
origin.
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Figure 5: Impedance of a two-wire passing through a pipe of radius R. The
dashed line shows the line impedance in free space.



e In a textbook, students are exposed to a variety of critical concepts
with broad application to a scientific education. In contrast, with a
code students would occupy their time learning a specific interface with
little general applicability.

e Textbook results are the ultimate open-source material. The notations
and derivations created over more than a century are transparent to the
user. Only the best approaches and most valid results can survive. In
contrast, three-dimensional numerical codes are commercial ventures
with proprietary content. Often, such codes are not ranked by their
accuracy or speed, but rather by how intensely they are marketed.

On the other hand, numerical codes are invaluable application tools for
a user with a solid knowledge of electromagnetic theory. Even in the simple
example of the two-wire transmission line, we can conceive many variants of
geometry or material properties beyond symmetric bare wires. An analytic
solution of a problem that might require an hour of code set up could demand
enough work to constitute of Ph.D. thesis.



