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Figure 1: Geometry of the calculation, cross-section of the strip line, dimen-
sions in mil.

A recent LinkedIn post highlighted a report from Simberian Electromag-
netic Solutions1 on conductor losses in strip transmission lines. The process
is well described by our Nelson code2 which performs frequency-domain
finite-element simulations of magnetic diffusion and eddy current losses. The
calculations described in the report provided a good opportunity to make
benchmark comparisons and to add a new example to the Nelson applica-
tion library. This report addresses three activities:

• Review the physical formulation and mathematical techniques used in
Nelson.

• Provide a template for modeling conductive losses in high-frequency
transmission lines.

• Illustrate techniques for organizing output data and testing accuracy.

Regarding the Simberian example, power loss and current distribution are
probably not concerns in microstrip lines that carry very small currents. On
the other hand, the techniques discussed can be applied to transmission lines
and bus bars in high-power RF and microwave devices.

1Y. Shlepnev, How Interconnects Work: Modeling Conductor Loss and Dis-

persion, 2016,Simberian App. Note 2016 01.
2https://www.fieldp.com/universalbfield.html
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Figure 1 shows a cross-section of the strip line geometry. A rectangular
copper strip has dimensions 1.2 mil × 7.0 mil. The copper return current
plates also have thickness 1.2 mil. They are separated from the top and
bottom of the strip by an 8.0 mil gap. Before discussing the calculations, it
is worthwhile to review some Nelson basics.

The governing equation for harmonic variations of magnetic field in the
non-radiative limit3 is

∇ ·

(

1

µ
∇A

)

= −J0 − σ
∂A

∂t
= −J0 − j2πσfA. (1)

The validity condition is that real currents are much larger than displacement
currents. In the equation, µ is the local magnetic permeability, σ is the
material conductivity, f is the excitation frequency and J0 is a current density
to drive the solution. In the present calculations, all regions have µ = µ0.
For a long transmission line with variations in x and y and effectively infinite
length in z, the sole component of the vector potential is Az. In this case,
the drive current density is in the z direction (J0z) and the electric field and
magnetic flux density are given by

Ez = −
∂Az

∂t
, (2)

Bx =
∂Az

∂y
, (3)

By = −
∂Az

∂x
. (4)

Equation 2 implies that the final term on the right-hand side of Eq. 1 is
Jrz = σEz, the inductive return current driven by the changing magnetic
field.

There is a subtlety in a solution like the present one where a current
carrying element with assigned J0z has non-zero conductivity (and hence
non-zero Jrz). In this case, the total current density is Jtz = J0z − Jrz. To
initiate a Nelson solution, we set the virtual drive current J0z by specifying
the total virtual current of the I0z conductor. The program divides the value
by the cross-section area of the conductor to set the drive current density.
The solution gives the actual current carried by the conductor as

Iz =
∫ ∫

dA (J0z − Jrz). (5)

Ideally we would like to specify the total current, Iz, carried by the conductor
to initiate the solution, but the magnitude and spatial distribution of the

3The reference S. Humphries, Finite-element Methods for Electromagnetics

(https://www.fieldp.com/femethods.html) gives a complete derivation.
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Table 1: Skin depth as a function of frequency

f (MHz) Skin depth (mil)

1.0 2.57
10.0 0.812
100.0 0.257
200.0 0.184
1000.0 0.082

return current density is not known in advance. For a calculation with single
driven conductor (as the present one), the resolution is simple. We perform
a solution with any assigned value of virtual drive current, I0z, find Iz from
Eq. 5 and then perform a second solution with the drive current adjusted by
the normalization factor:

I0z ⇒
I0
Iz

I0z. (6)

Fortunately, the user need not worry about this issue. Nelson performs the
process automatically when it detects a region with non-zero I0z and σ. The
normalization is more challenging with there are multiple interacting driven
conductors that require individual adjustment factors to achieve desired total
currents. The theory is described in Section 4.1 of the Nelson Instruction
Manual4. The procedure relies on the linearity of the solutions. If there
are N driven conductors, the code carries out N initial calculations with
normalized drive currents and then performs a matrix inversion to find in-
dividual correction factors. Again, the activities in Nelson are carried out
automatically.

We can now turn to the solutions. The mesh of the initial solutions covers
the full region shown in Fig. 1. The element size is 0.1 mil in the strip and
nearby return plates with coarser resolution in other regions. The critical
parameter in planning runs is the skin depth,

δ =

√

1

πfσµo

. (7)

Values determined with the Nelson Skin Depth Calculator tool are listed in
Table 1. Convergence of the finite-element solution requires that skin depth
extends over more than two elements. The table indicates that solutions may
fail at frequencies above about 50 MHz.

4https://www.fieldp.com/manuals/nelson.pdf
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Figure 2: Nelson input script for a low-frequency solution in the full geom-
etry.

I started at low-frequency to test solution validity and to compare results
to theory. The input script created by the Nelson Solution setup dialog is
shown in Fig. 2. The initial commands specify that the geometry is rect-
angular, dimensions are interpreted in mils and the frequency is f = 0.2
MHz. All physical regions have µr = µ/µ0 = 1.0. The dielectric region has
zero conductivity and the strip and plates have the conductivity of copper,
σ = 5.96× 107 S/m. The solution volume is surrounded by a flux-conserving
boundary, Az = 0.0 (Region 5), where lines of B are parallel at the periph-
ery. This choice is not ideal if the goal is a solution in infinite space, but
the alternative Neumann condition (lines of B normal to the periphery) is
non-physical. I shall discuss boundary effects in more detail later.

With a normalized drive current amplitude of 1.0 A, the total current
density has an average value of 1.845 × 108 A/m2, uniform to within 0.13%
over the width. In the standard analysis configuration, Nelson can calculate
and record integrals of several quantities over the cross-section. The code
finds an integrated power loss in the strip per length in z of 1.5483 W/m.
We can compare this to the analytic prediction. The cross-section area of
the 1.2 mil by 7.0 mil bar of 5.4193× 10−9 m2. Dividing the conductivity of
copper by this value gives a resistance per length of r = 3.0961 Ω/m. The
predicted power loss per length is
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p =
I2r

2
= 1.5480 (W/m). (8)

Another quantity of interest is the total current in conductive regions,

Iz =
∫ ∫

dA
√

2σp. (9)

Nelson determines the amplitude of current in the strip as 1.000094 A,
but the amplitude of return current in the upper and lower plates is only
0.0348 A. This appears a bit mysterious until we consider the effect of the
boundaries. A flux conserving boundary acts as though the solution volume
were surrounded by a superconductor. The boundary carries an effective
surface current density that causes the magnetic flux density outside to drop
to zero. At frequencies where the skin depth is large compared to the plate
thickness, almost the full intensity of B reaches the boundary. In this case,
the boundary carries most of the return current. On the other hand, at high
frequency where the skin depth is small compared to the plate thickness,
the full drop of magnetic flux density occurs across the plate. Here, we
expect to find that the integral of return current in both plates approaches
an amplitude close to 1.0 A. For example, at 50 MHz with a drive current
amplitude of 1.0 A and phase 0.0o, the plates carry a return current of 0.90
A with phase 179.97o. Figure 3 shows the corresponding current density
distribution. Note that values in the plate have been multiplied by a factor
of 6 for visibility. The current in the strip has been forced to the ends. The
current in the plate extends over a length a few times the strip width and
is confined to a skin depth. Figure 4 shows a plot of conductive power loss
per length in the strip and return plates. The dashed line is the theoretical
zero-frequency value. Losses increase with frequency because the current is
confined over a smaller area. Power loss in the plates is negligible at low
frequency but approaches a value of about 18% of the strip loss when the
skin depth is smaller than the plate thickness.

Smaller elements are required to investigate a broader range of frequency.
We can modify the setup in two ways to reduce the run time.

• The main interest is in the current distribution and power loss in the
center strip, so we will eliminate the plates, replacing them with a
flux-conserving boundary.

• The geometry of Fig. 1 is redundant. By symmetry, we need model
only one quadrant.

We will represent the first quadrant with the natural Neumann condition
(lines of B normal to the surface) on the left and bottom boundaries. The
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Figure 3: Current density distribution in the strip line at f = 50 MHz. Values
in the return plates have been multiplied by a factor of 6 for visibility.Nelson
input script for a low-frequency solution in the full geometry.

Figure 4: Conductive power loss per length as a function of frequency in the
strip and return plates. The dashed line is the theoretical DC value.
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Dirichlet condition Az = 0.0 (where lines of B are parallel to the surface) ap-
plies on the upper and right boundaries. Second, we reduce the element size
in the strip to 0.025 mil, allowing good representation of narrow skin depths.
With this choice, the calculation is stable to 500 MHz. Figure 3 shows how
the distribution of current density in the strip varies with frequency. The
flow is uniform at low frequency but the current density is pushed to the
outer edges of the strip as frequency increases, consistent with the Simbe-
rian results. At 500 Mhz, the current density on the top is confined to a
uniform layer of thickness δ, but with significant enhancement on the end.
Figure 6 shows the effect of eddy currents on the magnetic flux density B at
low and high frequency. Finally, Figure 7 shows the enhancement of power
loss over a broad frequency range. Here, the code results are multiplied by
4.0 to account for the other quadrants. The values below 100 MHz are in
good agreement with those of Figure 4. The integral of the time-averaged
magnetic field energy U can be used to infer the inductance per unit length,
L. The energy integral at 500 Mhz is about 85% of the low-frequency value
because of field exclusion from the strip. The prediction is that the charac-
teristic impedance of the line is about 8% higher at low frequency. In the
calculations of this report, the dielectric between electrodes was taken as
ideal. The RFE2 code5 can be employed to find stripline power losses with
imperfect dielectrics.

5https://www.fieldp.com/rfe2.html

8



Figure 5: Relative current density distribution in one quadrant of the strip
as a function of frequency.
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Figure 6: Lines of magnetic flux density B at low and high frequency. The
Neumann condition applies on the left and bottom edges.

Figure 7: Power loss per length in the strip as a function of frequency. The
dashed line is the theoretical DC value.
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