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Figure 1: Geometry of the strip transmission line with dimensions for the
example calculation (d = 3.0 mm and w = 10.0 mm).

In a previous tutorial1, I discussed some relationships between analytic
and numerical calculations in physics and how analytic results are useful
to confirm numerical work and to put it in perspective. In this tutorial, I
will use the another familiar example of the strip transmission line used in
high-frequency integrated circuits to show another aspect of the relationship
between analytic and numerical approaches, the use of scaling relationships
to organize and to generalize numerical results.

Figure 1 shows the geometry, a cross-section of a long assembly. An
electrode rests on a dielectric sheet that in turn rests of a grounded base
plane. The dielectric sheet has thickness d and the electrode has width w. We
assume that there are no nearby objects, so there is a large space with ǫr = 1.0
and µr = 1.0 above. The dimensions in Fig. 1 are in millimeters. Note that
the size of the assembly is considerably larger than might be encountered in
an integrated circuit. This is not a problem. We’ll express the results in a
form so that the ratio w/d is important, not the absolute dimensions.

1Analytic versus numerical approaches: the two-wire transmission line,

https://www.fieldp.com/tutorials/TwoWire.pdf
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A temptation in numerical calculations is to represent the target system
exactly, a literal simulation. Instead, we’ll organize the work to represent
the general class of strip transmission lines, giving the numerical calculation
some of the predictive capability of an analytic solution. In preparation,
consider the theory of the simple strip line presented in most introductory
texts on electromagnetism. The assumption is that w ≫ d so that field
energy outside the gap between the electrode and ground can be neglected.
Assuming that µ = µ0 in the dielectric, the following relations hold for the
inductance per length in z, the capacitance per length and the characteristic
impedance:
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The purpose of the numerical calculation is to investigate more practical
cases where w is comparable to d. The strategy is that rather than dealing
with absolute numbers of individual geometries, we will organize results to
make comparisons with the infinite-width predictions. This approach has
two advantages:

• Confirmation that the numbers are in the right ballpark so there is
probably not a fundamental mistake in the setup.

• Generalizing the results so that the apply to strip lines of any dimen-
sion.

The parameters for the calculation are d = 3.0 mm and ǫr = 2.8 (in the
range of many plastics and ceramics). I made solutions for several values of
w (5.0, 10.0, 20.0, 30.0, 40.0 and 50.0 mm) with the idea that intermediate
results could be determined by interpolation. The corresponding range of
w/d is 1.67 to 16.67. The electrostatic and magnetostatic calculations are
performed in a box 100 mm on a side to minimize boundary effects. We will
check the validity of this assumption later. Figure 1 shows a zoomed view of
the electrode region for the EStat calculation of the capacitance. Region 1
is an air volume (ǫr = 1.0) that fills the solution box. Region 2 is a dielectric
slab of thickness 3.0 mm that over-writes the bottom section of the solution
box. Region 3 is an electrode with a fixed potential V0 = 1.0 V. The electrode
has thickness 2.0 mm with rounded edges to avoid undefined fields at sharp
corners that would compromise the accuracy of the energy integrals. Finally,
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Region 4 sets nodes on the boundary of the solution volume to the fixed
potential condition V = 0.0 V. The region represents the bottom plane and
reflects the assumption that structures remote from the line are near ground
potential.

The run uses six Mesh input files to represent electrodes of different
widths. Preparation is relatively straightforward using the Mesh drawing
editor. After creating one assembly, the mesh is loaded into the editor. The
top and bottom lines of the Region 3 are deleted, the end arcs are selected
and moved, the top and bottom lines redrawn and the new mesh saved with a
name descriptive of the width. Similarly, six EStat input files can be quickly
prepared by changing the Mesh input file reference of the base script and
saving the modified files with different names. The full set of six calculations
can be performed in batch mode in less that half a minute. A single button
click in the postprocessor determines the global field energy per length (U),
and the capacitance follows from

C = 2
U

V 2
0

= 2U. (4)

Given the set of capacitance values Cn, the question is what is the best
way to display the data? Notice in Eqs. 1, 2 and 3 that all quantities involve
the ratio w/d. This is a good choice for the independent variable. For the
dependent variable, we shall use Cn/C∞. As a check, if we did everything
correctly the value should approach 1.0 at large values of w/d. Furthermore,
this choice clearly shows the relative effects of narrow electrodes compared
to the infinite electrodes of simple model. The curve with green markers in
Fig. 2 shows the results. As expected, the curve does tend toward the value
1.0 at large w although there is a significant discrepancy even at w = 50.0
mm. The capacitance is much larger than that of the simple model at small
w/d, reflecting the fact that the fringe fields spread out over a width larger
than w. There are two main advantages to the choice of display:

• Interpolations between the six calculation points give good estimates
of capacitance per length for intermediate values of w/d.

• The results can be applied to strip lines with similar electrode shapes
of any size.

Before we get carried away with generality, we need to recognize that the
values of ǫr hidden in the scaling may have an effect. The discrepancies from
the infinite values results from fringing fields, and their distribution is affected
by the dielectric constant of the sheet. A high value tends to squeeze more of
the electric field distribution into the electrode gap, reducing the difference
from the infinite plate model at low w, as shown in Fig. 3. Repeating the
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Figure 2: Ratio of the capacitance per length of a a strip transmission line
to the value for an infinite width line as a function of w/d for two values of
relative dielectric constant. Calculated values with fitted connecting curves.
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Figure 3: Equipotential lines for w = 10.0 mm with a high dielectric constant,
ǫr = 50.

calculations with ǫr = 50.0 gives the curve with red markers in Fig. 2. My
general conclusion is that the green curve of Fig. 2 gives good initial design
guidance for common dielectrics in the range ǫr = 2.0 → 4.0. Initial estimates
could be followed with numerical calculations with specific electrode shapes
and values of ǫr.

We’ll advance to the calculation of inductance per unit length. Because
it is unlikely to encounter insulating materials with µ 6= µ0, these results
have broad generality. To set up the PerMag calculation, I removed the
dielectric and added a new drive region inside the electrode (Fig. 4). The
goal is model high-frequency waves where the electrode excludes the magnetic
field and current flows in a thin layer on the surface. The previous tutorial
discussed an easily-implemented approach. The electrode is assigned a low
value of magnetic permeability (µr ≪ 1.0) so that it acts as a field excluder.
For a drive current of I0 = 1.0 A, the inductance is related to the field energy
in the air region by

L = 2
U

I20
= 2U. (5)

The main considerations for a good run are to provide sufficient elements to
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Figure 4: Geometry for the inductance calculation with lines of magnetic
induction B. The electrode of width w = 10.0 mm carries 1.0 A. Dark blue:
current source. Light blue: field shaper with µr = 0.001.

resolve the material properties (Fig. 4) and to allow sufficient run time for
complete convergence.

Figure 5 shows the normalized results. The inductance is lower at smaller
w because the field lines cover a much larger volume than that of the gap.
Even at large w, the results differ significantly from the infinite w approxi-
mation. For example, at w = 40.0 mm, the inductance is only 75% of the
simple theoretical prediction. We can check out the nature of the discrepancy
by doing a run where the air is region divided in two: the gap between the
electrode and ground plane and the remainder of the volume. The PerMag

code can then perform an energy integral organized by region. The result
is that the energy associated with fringing flux and return flux constitutes
25.4% of the total energy. I also ran check to show that the difference was
not a boundary effect by doubling the area of the solution volume. There
was a negligible difference in the energy calculation.
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Figure 5: Normalized inductance per length, L/L∞, as a function of w/d,
universal curve for strip transmission lines.

To conclude, Fig. 6 shows a normalized plot of the transmission line
characteristic impedance at ǫr = 2.8. In summary, this report emphasized
some useful techniques to make numerical studies more effective:

• Make comparisons with analytic results when possible to check whether
solutions are reasonable.

• Use scaling to normalize results – it is easier to see trends in data with
values near unity rather than very small or large absolute values.

• Use the code as an exploratory tool to confirm results.
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Figure 6: Characteristic impedance of a strip transmission line as a function
of normalized width (w/d) with a insulator dielectric constant of ǫr = 2.8.

9


