
Speeding Up

Stanley Humphries, Ph.D.

Field Precision LLC
E mail: techinfo@fieldp.com

Internet: https://www.fieldp.com

1



Our software handles two challenging classes of physical problems: finite-
element solutions for electromagnetic fields and Monte Carlo solutions for
electron/photon interactions in matter. Both types push the limits of modern
personal computers, so speeding up solutions is a primary concern. The
programs have three features to maximize the information output rate:

• Programs are coded in FORTRAN using optimized Intel compilers.

• They support parallel operation in multi-core computers.

• Multiple instances of programs may be launched in separate threads
on multi-core computers, working on solutions simultaneously.

• Programs may be called from batch files to run in the background so
the computer can address large solution sets autonomously while users
perform other tasks.

This tutorial concentrates on the second and third features with the goal of
defining realistic expectations for multi-core operation.

Our 3D electromagnetic codes support OpenMP for parallel operation
within a single instance of a program. Here, the user has the option to specify
the number of cores for the division of the task. In theory, a calculation
employing four cores should run in one fourth the time of a non-parallel
solution. In practice, the speed advantage for finite-element calculations is
significantly less for several reasons:

• Only one process at a time can access a file in sequential disk operations.
In programs that involve the creation of large files, data transfer can
be a significant bottleneck.

• Individual processes cannot simultaneously access the same memory
location. In a large matrix inversion, the mesh must be divided into
segments with special precautions at common boundaries. Depending
on the mesh size, there is a point where the division becomes counter-
productive, limiting the number of cores.

• Organizing the task division adds computational overhead.

• OpenMP operations may conflict with acceleration processes built in
to the CPU.

As an illustration, I made tests of OpenMP in a practical calculation
with MagNum, our 3D magnetic field code. Such a solution includes an
initial extended disk transfer to generate the coefficients for the finite-element
matrix inversion. I compared the most recent versions of OpenMP and

2



the Intel compiler to versions from a decade ago and found no significant
difference in the run times. I ran tests on two computers, a Windows 7
machine with an Intel Core i7 chip (clock speed 2.93 GHz) and a Windows
11 machine with a Core i3 chip at 3.30 GHz. Figure 1 plots the run time
versus the number of threads. There are some interesting features:

• With a single thread, the inexpensive Core i3 machine outperformed
the old workstation by almost a factor of 3, significantly higher than the
ratio of clock speeds. The implications are 1) there has been progress
in chip design in the last decade and 2) the Core i3 machine is doing a
lot of load optimization on its own.

• The use of two threads on the Core i7 machine reduces the run time
by about 2/3. There is only marginal improvement with more threads.
Even though the Windows Task Manager shows the CPU has gone
from 12.5% to 100%, the maximum run time reduction factor is only
1.67. This results partly from the single-thread disk operations which
occupy 78 seconds of run time and partly the computational work to
implement multi-processor operation.

• On the Core i3 machine, there is a moderate run time reduction factor
of 1.24 with two threads, but then the run time actually increases with
the number of threads. With the maximum of 6 threads, the run time
is reduced by only about 10%, even though the CPU is running flat
out. This may indicate that the OpenMP processes conflict with
optimization processes built into the chip.

An alternative to running one calculation in multiple threads is to run
multiple calculations, each with its own thread. The simplest option is to
run multiple instances of a program or several programs at a time. Each
instance occupies its own space in memory, so there is no conflict. The one
precaution is that the instances should not simultaneously access the same
file. As a test, I launched Magnum three times in different windows to
perform calculations in different directories. On the Core i7 machine, the
solution time when running a single instance of the program was 351 sec-
onds. Launching three independent solutions gave run times of 517, 526 and
532 seconds. I confirmed that the CPU usage increased from 12.5% to 38%.
The longer time for each run was due partly to simultaneous disk operations
during generation of finite-element matrix coefficients. Nonetheless, the pro-
cedure generated three times as much data, so the average time per data set
was 175 seconds. The use of 3 cores use raised the data generation rate by a
factor of 2.0. Results were less favorable on the Core i3 machine. I doubled
the number of matrix inversion steps to maintain similar solution times. The

3



Figure 1: OpenMP test: run time of the benchmark example as a function
of the number of threads for two computer configurations.

run time for a single instance was 220 seconds. Three simultaneous solutions
had average run times of 456 seconds. The data generation rate was raised
only by a factor of 1.4. As with the OpenMP results, I suspect there are
deep optimization processes occuring in the newer chip so the threads do not
operate independently.

Another way to utilize multiple cores is by launching multiple calculations
in the background. All Field Precision programs can run as background tasks
called from the Windows command prompt or batch files. I made a test setup
with mesh and winding files in a directory C:\simulations and three instances
of the Magnum input file in subdirectories. A batch file in the directory has
the content:

START /B C:\fieldp/amaze/magnum.exe C:\simulations\PC01\latching_solenoid

START /B C:\fieldp/amaze/magnum.exe C:\simulations\PC02\latching_solenoid

START /B C:\fieldp/amaze/magnum.exe C:\simulations\PC03\latching_solenoid

The relative run times and data rate advantages for the Core i7 and Core
i3 machines were not significantly different from those obtained with in-
stances launched in individual windows. In summary, parallel operation with
OpenMPmay help increase the data generation rate but advantages depend
on the chip logic and disk access rate. With Nc cores, the data rate advan-

4



Figure 2: Relative data rates for GamBet calculations as a function of the
number of threads for two computer configurations.

tage may be significantly less than a factor of Nc even though the Windows
Task Manager shows that the CPU is doing Nc times as much work.

There is one exception where the data rate enhancement approaches Nc.
Our GamBet program uses Monte Carlo techniques to model X-ray physics
and electron interactions with matter. These calculations involve tracking
showers for Np input particles. This number must be large because the
statistical accuracy scales as

√
Np. Because primary and secondary particles

move at random through the mesh, they must be tracked sequentially to
avoid memory access conflicts. Therefore, parallelization with OpenMP

is not possible. We developed our own approach for extensive runs. The
control instance of the program runs in a window or in the background. It
analyzes the input script, calculates material data and records the result in
a file. The control instance then launches (Nc−1) instances of a background
version of itself. The subtasks have different random number seeds so that
the results are statistically independent. Each instance uses its own section
of memory and creates independent files of dose distributions and particle
escape statistics. When all calculations are complete, the control instance
combines the data files to obtain results with enhanced statistical accuracy.
File transfers are quick and the instances are offset in time, so there is no disk

5



access conflict. I made test calculations on the two computers with different
levels of parallelization. I kept Np, the total number of shower calculations,
the same and checked the advantage of dividing the work into multiple tasks.
Figure 2 plots the results. The relative data rate equals the ratio of time to
complete Np showers with a single core divided by the multiple-core times.
The data rate for the Core i7 machine is close to ideal. Even the Core
i3 machine shows a significant improvement with multiple threads. For a
comparison of the absolute data rate, note that the single-thread run time
for the Core i3 machine is only one-third that for the older Core i7 machine.

The emphasis in this tutorial has been on maximizing the data generation
rate using the multiple core capabilities of personal computers. Nonetheless,
it’s important to remember that there are time-saving methods that do not
depend on the computer and are often more effective. Here are some RI
techniques that can be major time savers in finite-element calculations:

• Make preliminary analytic estimates to avoid unproductive regions of
parameter space in the computer calculations.

• Design meshes to avoid high element density and conformal shaping in
regions that are not critical to the solution.

• Apply symmetry conditions and special boundaries to minimize the
mesh size.

• Monitor numerical results as they become available to guide subsequent
calculations.

• Make full use of advanced program features.

Regarding the last item, our 3D electric and magnetic field programs support
a procedure for microscopic solutions. Here, a large scale solution provides
boundary conditions to determine field distributions around extremely small
features. The two-step approach is faster and more accurate than a single
solution requiring a complex mesh to represent the large difference in scale.

6


