
Code implementation of

2D random walks

Stanley Humphries, Ph.D.

Field Precision LLC
E mail: techinfo@fieldp.com

Internet: https://www.fieldp.com

1



We are developing ProtoCalc, an extension to the Xenos package, to
model ion interactions with matter. Xenos currently handles only electrons
and photons. A primary source of ion data is the SRIM

1 suite to find
ion range and stopping power in materials for a given input energy. An
additional output is the transverse straggling at the end of the trajectory,
the RMS radius of the ion distribution about the projection of the initial
orbit vector. An issue for ProtoCalc is how to represent the evolution of
the transverse distribution over the length of the trajectory based on the end
value. The process is a random walk in the transverse plane resulting from a
large number of small angle scattering events. This report summarizes some
basic results for a 2D random walk and how the process is implemented in
ProtoCalc and GenDist (our utility for generating particle distributions).
I used GenDist to confirm the theory numerically, to test algorithms and
to check accuracy versus the number of steps.

In the limit of a large number of steps and particles, a one-dimensional
random walk that starts from the origin converges to the normal probability
distribution:

p(x)dx =
dx

σx

√
2π

exp

[

−
1

2

(

x

σx

)

2
]

. (1)

where σx is the root-mean-squared value of x. In a 2D walk from the origin
in the transverse plane, the final distribution has cylindrical symmetry. If r
is the distance from the origin, the probability distribution is:

p(r)dr =
2rdr

σ2
r

exp

[

−
(

r

σr

)

2
]

. (2)

Defining the variable R = (r/σr)
2, we can rewrite Eq, 2 as:

p(R)dR = exp(−R) dR. (3)

In contrast to the normal distribution of Eq. 1, Eq. 3 is integrable. It is easy
to show that the probability function is normalized and to confirm that the
expected value of R is

R =
∫

∞

0

R p(R)dR = 1.0. (4)

Equation 4 implies that the expected root-mean-squared value of the radial
displacement is r2 = σ2

r .
Suppose we initiate a random walk from the origin with random angle,

uniform step size λ and Ns steps. When Ns ≫ 1, the expectation is that

1Stopping and Range of Ions in Matter, http://www.srim.org

2



the distribution will approach that of Eq. 2. To generate an approximate
distribution with specified σr, the step size should be:

λ =
σr√
Ns

. (5)

I experimented with numerical routines and confirmed agreement with Eqs. 2,
4 and 5 using our programGenDist because it supports extensive diagnostics
for distributions. A second motivation was that the work would add a new
option for soft beam generation to to the program. In response to the script
command

DEF CIRCGAUSS SigmaR Np [Ns],

GenDist initiates random walks for Np particles that approach a the trans-
verse probability distribution of Eq. 2 with the specified σr. I included the
optional parameter Ns to check how many steps were necessary for a good ap-
proximation. Because the routines would be applied in ProtoCalc, I wanted
a high speed algorithm that avoided redundant calculations of trigonometric
functions. I defined a unit vector structure

TYPE UVector

REAL x

REAL y

END TYPE

and an array of the structure

TYPE (UVector) :: UVect(0:359)

At start up, GenDist fills the array with the values of the cosine and sin at
angles θn = (0.017453)n where n = 0, 1, ..., 359. In the loop through random
walk steps, direction vectors are chosen according to the calculated index

CALL Random_Number(Zeta)

N = INT(359.0*Zeta + 0.49)

where ζ is a random number in the range 0.0 to 1.0.
Figure 1 shows some results for parameters Np = 100, 000 and Rout =

σr = 1.0. The top plots are histograms of the number of particles per radial
interval and the bottom plots show the end distribution in the x-y plane of
a limited number of the particles. The number of steps was Ns = 10 on the
left and Ns = 100 on the right. There is little difference between the results.
Numerical evaluations of the RMS radius gave 0.9991 for Ns = 10 and 0.9986
for Ns = 100. The implications are 1) that the method of choosing random

3



Figure 1: Comparison, two values of Ns for Np = 100, 000 and Rout = σr =
1.0. Top: radial probability distribution. Bottom: Distribution in the trans-
verse plane, plot of 1/100 of the particles for clarity.

4



Figure 2: Numerical results (symbols) compared to the prediction of Eq. 2
(line).

step direction vectors does lead to a radially symmetric distribution and 2)
that any value of Ns greater than 10 is sufficient for a good representation.
Figure 2 further confirms the validity of the numerical method. The blue
symbols are derived from the histogram of Fig. 1 with Ns = 100 and σr = 1.0
while the line is a plot of Eq. 2.

The application to ProtoCalc is straightforward for calculations with no
applied magnetic field in a single material. The PRT file that defines the input
beam distribution gives an initial position X0 and unit directional vector U0

for each ion. A calculation for an ion consists of tracking the trajectory in
space by dividing the trajectory into a number Ns segments. The change in
ion energy over the segment derived from the tabulated stopping power is
assigned to the element occupied by the midpoint of the segment. The num-
ber of segments is determined from the range Rn and the uniform segment
length D:

Ns =
Rn

D
. (6)

For a smooth distribution of energy on the geometric mesh, D should be less
than or equal to about half the minimum element dimension. While moving
over segments, the ion performs a transverse random walk with step length
λ given by Eq. 5. The axial step size is adjusted to

5



D ⇒
√
D2 − λ2, (7)

so that the total ion path equals Rn. The ion path projected on the U0

direction consists of a set of (Ns + 1) points separated by D starting at X0.
The final issue is find the actual trajectory that includes the transverse

displacements of the random walk. From the GenDist study, we know the
answer in a frame of reference with origin atX0 where the z

′ axis points along
U0. The x′ and y′ axes are normal to z′ and orthogonal. The orientation of
the x′-y′ plane is arbitrary because there is no preferred transverse coordinate
system for the random walk. After n steps, the axial position is z′n = nD
while the transverse positions follow from the random walk algorithm, x′

n

and y′n. To transfer to the simulation frame, we find two orthogonal unit
vectors normal to U0 by taking cross products, Ux0 and Uy0. The position
at the end of segment n is

Xn = X0 + nDU0 + x′

nUx0 + y′nUy0. (8)

The trajectory calculation in ProtoCalc will be extremely fast. The vectors
in Eq. 8 are evaluated once at the start of a track while the random walk
displacements are determined by multiplication and addition operations.

6


