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Figure 1: Geometry of the foil resistor, meshed for a 3D calculation. Note
that the thickness is 2.0 mm, a hundred times that of the 20 µm foil thickness
in the experiment.

I had a recent inquiry about modeling current flow though a shaped foil
conductor in support of experiments on shock initiation. The initial goal
was to determine the distribution of current density and power distribution
before significant foil heating. Figure 1 shows the geometry. The foil spans
a 30 mm air gap between high voltage electrodes. The foil has 40 mm width
at the connection point and width 5.3 mm at the neck. The foil thickness
is only 20 um. At first glance, this appears to be a challenging problem for
a 3D finite-element code because of the large difference in scale sizes. In
reality, the solution can be resolved to a simple two-dimensional electrostatic
conductive calculation because of the following factors:

• The current rise-time (limited by the pulser inductance) is long enough
so that the effective skin depth is greater than the foil thickness. The
implication is that inductively driven currents are small compared to
the real current through the foil.

• In addition, the conductive current is much larger than displacement
currents, so an electrostatic solution is sufficient.

• The field distribution in the air region surrounding the foil does not
effect the current distribution in the foil.
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Figure 2: Two-dimensional EStat solution. a) Cross-section geometry with
equipotential lines. Current flows normal to the lines. b) Scan of current
density over the foil at the left-hand boundary.

The implication is that there is no potential difference across the narrow
dimension of the foil. Therefore, the flow of conductive current would be
unaffected if we added an identical adjacent foil. The extra foil would change
external fields, but would not affect the current distribution in the first foil.
By this reasoning, we could add an infinite set of adjacent foils. The geometry
of the resulting system is planar – the foil becomes an extrusion with infinite
length in z and geometric variations in x and y. A 2D electrostatic code
could then applied. I will first discuss the 2D solution, and then review a 3D
calculation to confirm the validity of assumptions.

The setup in the EStat
1 code takes just a few minutes. Figure 2 shows

the geometry and calculated results. In building the conformal triangular
mesh, Region 1 fills the solution volume, Region 2 is a long bar with a cross
section in the shape of the foil that over-writes elements of Region 1. Region
3 is the set of nodes on the left boundary and Region 4 comprises the nodes
of the right boundary. The control script for the EStat solution has the
following content:

1https://www.fieldp.com/estat.html

3



Mesh = FoilFlow

Geometry = Rect

DUnit = 1.0000E+03

* Region 1: AIR

Sigma(1) = 1.0000E+00

* Region 2: FOIL

Sigma(2) = 5.7970E+07

* Region 3: LEFTBOUND

Potential(3) = -5.0000E-01

* Region 4: RIGHTBOUND

Potential(4) = 5.0000E-01

EndFile

The appearance of Sigma commands signals that the solution is conductive.
There is a voltage difference of 1.0 V between the boundaries on the left-hand
and right-hand sides. The top and bottom boundaries assume the default
Neumann condition (where equipotential lines are normal). The foil has the
conductivity of copper and air is assigned a much lower conductivity. The
non-zero value is required for convergence. Current density flows normal to
the equipotential lines of Fig. 2a. With the large difference in conductiv-
ity, the current flow inside the foil is unaffected by the field distribution in
air. The potential distribution along the foil periphery provides a boundary
condition for the Laplace equation solution in the surrounding air volume.

Figure 3 shows a plot of the resistive power density, p = j2/σ, showing
the high concentration at the neck. In the analysis mode, EStat provides
several options to determine the resistance of the structure. For example,
Fig. 2b shows a scan of the linear current density |J | along the left boundary.
Several operations are performed in response to this analysis script:

INPUT FoilFlow.EOU

OUTPUT FoilFlowAnalysis.DAT

VOLUMEINT 2

SURFACEINT 4 -2

LINEINT 14.99 -20.0 14.99 20.0

ENDFILE

The volume integral gives the result p = 2.3717×107 W/m (power dissipation
per meter length in z). Multiplying by the foil thickness, the total power
dissipation in a foil of thickness 20 µm is P = 473.34 W. With the 1.0 V
applied voltage, the resistance is R = 2.113 mΩ implying a total current I =
473.34 A. The surface integral of current flow from the right-hand boundary
into the foil (the integral of Fig. 2b) is J = 2.3717×107 A/m. Multiplying by
the foil thickness, this method predicts a total current I = 474.34 A. Finally,
the line integral result yields a total current 470.88 A. Results of the three
methods are consistent to within ±0.4%.
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Figure 3: Resistive power deposition j2/σ in W/m3.

To confirm the assumptions of the analysis, we can do a 3D solution using
the mesh of Fig. 1. Because the thickness of the foil should not affect the
current distribution over the cross section, we will facilitate the finite-element
analysis by using a thickness of 2.0 mm rather than 20 µm (differing by a
factor of 100.0). The run-time of the HiPhi

2 solution with 857,285 elements
is 51 seconds. Figure 4 shows results. The top equipotential plot shows
a cut across the direction of current propagation 5.0 mm from one of the
drive electrodes. The plot confirms that the potential is uniform across the
thickness of plate. The lines in the air region are quite different from those
of a foil with infinite length in z. Nonetheless, the relative distribution of
current density inside the conductor is the same. For comparison, Fig. 4b
shows the power density distribution a slice normal to z. The results are
almost identical to the 2D results of Fig. 3, the small difference resulting
from different size and shape of the computational elements.

The PhiView analysis script has the content:

INPUT FoilFlow3D.HOU

OUTPUT FoilFlowAnalysis.DAT

VOLUMEINT 4

SURFACEINT 3 -4

ENDFILE

2https://www.fieldp.com/hiphi.html
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The integral of power over the foil volume is 4.7186 × 104 W. Dividing
by a factor of 100.0 gives almost a result almost exactly equal to the 2D
calculation scaled to the 20 µm foil. Similarly, the surface integral over the
contract area between the electrode and foil is 4.7249 × 104 A, again 100
times the result for the thin foil.

Finally, it’s always a good idea to check that numerical results are in the
right range with an analytic solution. Figure 5 shows the geometry. The
foil cross section is approximated with a butterfly shape. The dimensions
are W1 = 4.0 × 10−2 m, W2 = 5.0 × 10−3 m, L = D/2 = 1.5 × 10−2 m and
the thickness is δ = 2.0 × 10−5 m. The idea is to divide the foil into small
resistors of length dz and add them in series. The resistance of one element
is

dR =
ρdz

δ(W1 − z(W1 −W2)/L
. (1)

where ρ is the volume resistivity of copper, 1.725 × 10−8 Ω-m. Defining
Z = z/L and taking the integral from z = 0 to z = L, the total resistance of
both butterfly sections is approximately

R =
ρD

δW1

∫
1

0

dZ
1

1− Z(1−W2/W1)
. (2)

The initial factor in Eq. 2 is the resistance of a uniform foil of width W1,
length D and thickness δ. The value is 6.46 × 10−4 Ω. The integral can be
viewed as a correction factor to account for the foil shape. Applying a table
of integrals, the value is

∫
1

0

dZ
1

1− Z(1−W2/W1)
= −

1

1−W2/W1

ln(W2/W1) = 2.377. (3)

The predicted resistance is R = 1.53 mΩ compared to the code result of
2.12 mΩ. We can conclude that the numerical results are reasonable. The
difference is not surprising. The underlying assumption of the simple model
of Fig. 5 is that current is uniformly distributed over the height of the slices.
Figure 2b shows that the condition does not hold in a full solution, so we
expect that the analytic estimate will be low.
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Figure 4: HiPhi solution using the mesh of Fig. 1. a) Equipotential lines,
slice normal to x to the direction of current flow through the foil, 5 mm from
the electrode. b) Slice normal to z, power density profile using the same
scaling as Fig. 3.
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Figure 5: Geometry for estimating the resistance of a shaped foil.
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