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1 Introduction

The beam breakup (BBU) instability may affect beam quality in high-current linear induction
accelerators. Briefly, a transverse displacement of the beam can transfer energy to resonant
modes in the acceleration cavities of the type TM1n0. These modes have an axial electric
field (Ez) at the beam position that reverses direction crossing the axis. For the discussion,
assume that the electric field reverses in the y direction. In this case, TM0n0 modes have
a concentration of transverse magnetic field (Bx) at the beam position. The fields cause
beam deflections in y that can drive the mode at increased amplitude in subsequent cavities.
The result is the growth of beam displacement moving downstream with increasing resonant
mode amplitude. There have been several theoretical and experimental studies of BBU
electromagnetic modes in the DARHT 1 and DARHT 2 accelerators. My task was to set
up models using the Aether three-dimensional electromagnetic code to enable comparisons
of mode properties between different cavity configurations of the DARHT 1 and DARHT
2 accelerators as well as future induction accelerator projects. Aether is optimized for
personal computers, making it a convenient study tool for DARHT personnel.

Initially, I concentrated on the DARHT Mod2 geometry of Fig. 1. Electromagnetic
calculations can generate a wealth of information, so it is important to know exactly what
to look for. My strategy was to start from a known point (the TM110 mode in a metal
cylindrical cavity) and to make incremental changes to arrive at the structure of Fig. 1. In
the process, I found some useful physical insights that I will summarize in this report.1

2 Transverse mode in a cylindrical metal cavity

It is useful to start with mode calculations in a simple geometry for two reasons:

• We can compare numerical results to analytic predictions.

• It is easier to display and to understand field variations compared to those in the
convoluted geometry of the DARHT cavity.

Accordingly, I will discuss Aether calculations for modes of the type TM1n0 in a cylindrical
cavity. I used dimensions comparable to those of the DARHT cavities: radius R = 23.5 cm
and length D = 3.0 cm. Although the cavity has two-dimensional symmetry, it is necessary
to use a three-dimensional code to find modes of type m = 1. The first step is the creation of
an appropriate mesh using the MetaMesh program2 An element size of 0.50 cm gives good
accuracy and short run time. I set a constraint that modes of interest must have Ez = 0.0
along the line y = 0.0. In other words, the m = 1 modes satisfy the symmetry condition

Ez(x, y, z) = −Ez(x,−y, z). (1)

1The calculations in this report deal with cold-cavity modes where ferrites are assumed to be isotropic
with uniform properties. The characteristics of ferrite in an induction linac are much more complex under
load where saturation effects are important.

2For brevity, I will not list contents of input files in this report. The archive BBU01.zip contains the
complete set of input files to generate the results of this report arranged by section.
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Figure 1: DARHT Mod2 acceleration cavity, a figure of revolution about the axis at the
bottom. A) Beam tube of radius 7.41 cm. B) Vacuum region. C ) Rexolite insulator. D)
Transformer oil. E ) Surface of the ferrite stack.

Equation 1 implies that it is not necessary to model the full cavity. Instead, we can model
the region y ≥ 0.0 with a metal boundary condition at y = 0.0. This approach has two
advantages:

• Halving the number of elements reduces the run time.

• Modes of type m = 0 are suppressed.

The second condition helps to reduce distractions when we address more complex cavity
geometries.

The technique in MetaMesh is to fill the solution volume (a box with sides Lx = 48.0
cm, Ly = 24.5 cm and Lz = 4.0 cm) with elements that have the property of metal. Then, we
carve a cylindrical volume of radius 23.5 cm and length 3.0 cm and put a sheet of thickness
Ly = 0.5 cm at y = −0.25 cm to define the symmetry boundary. The final region (a cube
with sides 1.0 cm) is placed near the point of maximum expected electric field. This region is
set as a current source (jz) to excite the electromagnetic mode. Figure 2 shows the resulting
mesh. Note that the mesh is regular rather than conformal. The time-domain, finite-element
formulation of Aether is based on box elements. Therefore, the MetaMesh input script
has no SURFACE fitting commands and includes the command SMOOTH 0.

Resonant-mode calculations with Aether involve two operations:

• Identification of resonant frequencies by excitation of the cavity with a broad spectrum
pulse followed by Fourier analysis of probe signals.
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Figure 2: Mesh to calculate the TM110 mode of a cylindrical cavity, cross-section at z = 0.0
cm.

• A field calculation at the identified frequency.

I made resonance and field calculations for both the half and full geometries. The motivations
where 1) to validate use of the symmetry condition and 2) to generate illustrations showing
the full mode. A probe recorded Hx near the axis. The predicted frequency was

f110 =
3.832c

2πR
= 778.6 MHz. (2)

The run times for resonance search were 24 seconds for the half cavity and 78 seconds for
the full geometry. Figure 3 shows the Fourier analysis of the probe signal. Note that the
resonance peak had a non-width, the result of discretization in space and time. Using a peak
peak-detection algorithm, Aether yielded the following resonant frequencies: 779.32 MHz
for the full cavity and 779.37 MHz for the half cavity.

I made field calculations for both configurations at the resonant frequencies. In this case,
the solution times were 4 seconds for the half solution and 14 seconds for the full solution.
Figure 4 shows the distribution of Ez and Hx at peak amplitude in a plane normal to z. The
areas of high electric field represent axial displacement current between the cavity walls. The
return current flows either through the walls around the outer boundary or across the axis
to feed the displacement current in the other half-plane in y. As a result, there are regions
of strong Hx with opposite polarity near the axis and outer wall. Figure 5 (taken from my
book Charged Particle Beams) clarifies the nature of the mode through an equivalent
circuit.
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Figure 3: Fourier analysis of Hx near the axis of a cylindrical cavity with R = 23.5 cm. The
excitation pulse covered the range from 300 MHz to 1300 MHz.

In review, the half-cavity setup had three features to ensure a unambiguous identification
of the desired mode:

• The metal boundary condition at y = 0.0 favored modes of type m = 1.

• The excitation source of jz was placed near the point of maximum expected electric
field Ez.

• The probe to detect Hx was placed near the point of maximum expected magnetic
field.

The same methods could be used to create higher-order modes of type TM1n0, with predicted
frequencies f120 = 7.016c/2πR = 1425 MHz and f130 = 10.175c/2πR = 2067 MHz. These
modes are not be of interest for DAHRT cavity calculations because of the possibility of ra-
diation transport along the large beam pipe (Fig. 1). The cutoff frequencies for modes in the
pipe of radius 0.0741 m are 1550 MHz for TM modes and 1180 MHz for TE modes. Because
energy can move freely along the beam pipe above the cutoff, high-frequency cavity reso-
nances will not occur. In the remainder of this report, I will consider only the fundamental
BBU mode.

Given an understanding of the TM110 mode, we can identify the computational challenges
presented by the DARHT cavity by noting the differences between the simple cylindrical
cavity and the system of Fig. 1. The DARHT geometry is clearly more complex, but this
issue is handled easily by a finite-element code – the DARHT cavity can be viewed as a
twisted cylinder. Other differences are more significant:

• Outer regions have a dielectric fill (ǫr > 1.0).
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Figure 4: Full cavity calculation of the TM110 mode in a cylindrical cavity. Plots of Ez (at
0.0o phase) and Hx (at 90.0o phase) in the plane z = 0.0 cm.
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Figure 5: Characteristics of the TM110 mode. a) Electric field distribution. b) Equivalent
circuit model.
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• The large-diameter beam pipe shifts the resonant frequency and perturbs the field
distribution near the axis.

• The outer boundary is a ferrite rather than a metal wall.

The remainder of this section addresses the effect of dielectrics on the TM110 mode of a
cylindrical cavity. Section 3 discusses the effects of the beam pipe while Sect. 4 reviews
methods to represent a ferrite boundary in a finite-element calculation.

It is easy to modify the cylindrical-cavity solution to include dielectric regions. I assigned
a relative dielectric constant ǫr = 2.3 to the region 15.0 ≤ r ≤ 23.5 cm. The choice ǫr was
approximately the average of values for transformer oil and the Rexolite insulator of the
DARHT cavity. The value 15.0 cm was close to that of the inner radius of the DARHT
insulator. The top illustration in Fig. 6a shows the mesh in a plane normal to z. The effect
of the dielectric region was to increase the capacitance in Fig. 5b, lowering the resonant
frequency from 779.3 MHz to 637.1 MHz. There was a small change in the field morphology,
as shown in Fig. 6. The middle illustration shows contours |Hx| for the bare cavity, while
the distribution in the lower illustration includeds the effect of the dielectric. Because of the
increased capacitance at large radius, a higher fraction of return current flowed through the
outer wall.
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Figure 6: Effect of a dielectric outer region on the TM110 mode. Top: mesh in a plane normal
to z. Center: distribution of |Hx| with the dielectric relative permeability set to ǫr = 1.0.
Bottom: distribution of |Hx| with the dielectric relative permeability set to ǫr = 2.3.
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Figure 7: Variation of f110 as a function of beam pipe radius. Cylindrical cavity with
R = 23.5 cm and D = 2.0 cm.

3 Effect of the beam pipe

The presence of an axi-centered beam pipe perturbs the flow of current of the TM110 mode
between the upper and lower halves of the cavity. Current must follow a longer path, raising
the effective inductance across the axis (Fig. 5) and modifying the field distribution near the
axis. Therefore, we expect a decrease in the resonant frequency with increasing beam pipe
radius. I created a set of calculations based on a bare cylindrical cavity with R = 23.5 cm
and D = 2.0 cm (close to minimum gap width of DAHRT cavity). I added beam pipes of
different sizes up to a maximum radius of 7.5 cm. On issue is how to set boundary conditions
where the pipe intersects the axial boundaries of the solution volume. The lowest-frequency
transverse mode is evanescent in even the largest pipe, so the field levels should drop off
quickly moving upstream and downstream. Accordingly, I constructed solutions with beam
pipes of depth 14.0 cm terminated with a metal boundary.

I set up a series of eight mesh-definition files for beam pipe radii from 0.0 cm to 7.5 cm. I
also made resonance calculations for each geometry and field calculations for radii of 0.0 cm
and 7.5 cm . Figure 7 shows the frequency of the TM110 mode as a function of the beam pipe
radius. A pipe of radius 7.5 cm lowers the frequency by a factor 0.916. More significant for
the BBU instability, the flow of return current around the pipe aperture strongly influences
the field distribution near the axis. For example, Fig. 8 shows the variation of |Hx| in the
plane z = 0.0 for beam pipe radii of 0.0 cm and 7.5 cm. The solutions have been normalized
to the same total field energy. A standard assumption in BBU calculations that the deflection
magnetic field is approximately uniform over the beam cross section clearly does not hold.
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In addition to the strong spatial variation, introduction of the beam pipe also reduces the
value of Hx integrated over z. There is also a change in Ez, as shown in Fig. 9. The beam
pipe introduces a non-linear variation, so the assumption of approximately uniform gradient
dEz/dy over the beam volume is invalid.

Finally, Fig. 10 shows plots of field variations in the plane x = 0.0 cm. Slice plots in
this plane will be useful when we discuss the irregular geometry of the DARHT cavity. It
is important to understand the type of field variations to expect for transverse modes. The
top sections show variations |Hx| and the bottom section show |Ez|. For each quantity, the
upper illustration corresponds to the ideal TM110 mode in a cylindrical cavity with no beam
pipe. Consistent with Fig. 4, the deflecting magnetic field exhibits a maximum at the axis
and the outer radius. It passes through zero in the region of high electric field. In contrast,
with the beam pipe included the zero crossing shifts inward and the field value is low near
the axis. Furthermore, Hx near the axis extends upstream and downstream over a larger
region than the cavity width. The lower sections show the non-linear variation of Ez near
the axis.
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Figure 8: Distribution of |Hx| for the TM110 mode in the plane z = 0.0 cm. Top: No beam
pipe. Bottom: Beam pipe of radius 7.5 cm.
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Figure 9: Variation of |Ez| along y for the TM110 mode at x = 0.0 cm, z = 0.0. Top:
cylindrical cavity, R = 23.5 cm, D = 2.0 cm. Bottom: cavity with beam pipe of radius 7.5
cm.
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Figure 10: Field variations for the TM110 mode in the plane x = 0.0 cm without and with
a beam pipe of radius 7.5 cm (R = 23.5 cm, D = 2.0 cm). Top: |Hx|. Bottom: |Ez|.
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Figure 11: Geometry of the coaxial line test solution.

4 Modeling ferrite boundaries

The model of the ferrite boundary shown in Fig. 1 is critical. The main purpose of this
work is to determine how changes in the configuration of ferrites affect the BBU mode. This
section reviews the physics of ferrite boundaries and techniques to represent them in a finite-
element solution. To begin, I studied the simplest geometry and mode structure, a coaxial
transmission line resonator. Here, I could employ the two-dimensional WaveSim code. It
runs quickly and determines an exact matrix-inversion solution rather than the approximate
time-domain method of Aether. Figure 11 shows the test geometry, a coaxial line with
inner radius ri = 0.10 m and outer radius ro = 0.23 m. The element size for the mesh was
0.005 m. The vacuum section of the line was 1.0 m long. There was a second material region
of length 0.02 m. The properties assigned to this region determined the nature of the mode.
The solution volume terminated with a single-element layer to absorb traveling waves in the
second medium. Modes were excited by a source region at z = 0.75 m that carried a radial
current density of the form

jr = A
exp(j2πft)

r
. (3)

Transmission and reflection of waves at the ferrite are determined by its impedance:

Z =

√

µr

ǫr
Zo, (4)

where µr is the relative magnetic permeability of the medium, ǫr is the relative dielectric
constant and Zo is the impedance of vacuum, Zo = 377.3 Ω. The reflection and transmissions
coefficients for the electric field Er and magnetic field Hθ of a wave incident on the ferrite
are given by:
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RE =
Z/Zo − 1

Z/Zo + 1
, TE =

2(Z/Zo)

Z/Zo + 1
,

RH =
1− Z/Zo

Z/Zo + 1
, TH =

2

Z/Zo + 1
. (5)

where Z/Zo =
√

µr/ǫr. The wave-reflection properties of the medium are therefore deter-
mined by the ratio of µr to ǫr rather than their absolute values. For a practical electromag-
netic calculation, we want to avoid large differences in the speed of light between regions.
The speed of light in the ferrite is given by

v =
c√
µr ǫr

. (6)

In an real ferrite, the large values of µr and ǫr give a low value of v. The resulting short
wavelengths compared to vacuum would require small elements to resolve. We can apply the
additional condition:

µr ǫr = 1 (7)

without affecting wave reflection properties. The uniform speed of light throughout the
solution volume means that we can use uniform element size. The assumption reduces
concerns about Courant stability in the time-domain calculation with Aether discussed in
following sections.

We can simulate a metal downsteam boundary by setting the ferrite properties to ǫr = 108

and µr = 10−8. In this case, the condition Er = 0.0 holds at both boundaries. The coaxial
line becomes a half-wave resonant with λ = 2.0 m. The theoretical resonant frequency is

f =
c

λ
= 149.896 MHz. (8)

A WaveSim solution gives f = 149.896 MHz. At the opposite extreme, we can set the
ferrite to infinite impedance (ǫr = 10−8 and µr = 108.). In this case, the electric field has
a maximum at the boundary and Hθ = 0.0. In this case, the system is a quarter-wave
resonator with λ = 4.0 m and f = 74.948 MHz. Again, a WaveSim yields the expected
result.

Next, consider the behavior of an actual ferrite boundary. One challenge is that the
property specifications of the DARHT ferrites have been lost to time. Until measurements
are available, I will use some reasonable estimates. I purchased TDK PE-14 induction linac
cores about 30 years ago. They had a quoted small-signal relative magnetic permeability
of µr = 600. An internet search of the properties of nickle-zinc ferrites yields values up
to µr = 10000. Relative dielectric constants are in the range ǫr = 20 to 603. The volume
resistivity may vary by several orders of magnitude. The ferrites I purchased had ρ ∼= 104 Ω-
m. At a frequency of 800 MHz, the skin depth is approximately 7.0 cm.

3G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy and B.S. Boyanov, Dielectric properties of poly-

crystalline mixed nickel-zinc ferrites, Materials Letters 40 (1999), 39.
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For a physical model, I assume that the standing wave in the resonator consists of the
superposition of two traveling waves of half amplitude. When the forward-going wave strikes
the ferrite boundary, a portion of the energy continues as a traveling wave according to
transmission coefficients of Eq. 5. Another assumption is that in the DARHT cavity, energy
transmitted to the long ferrite stack does not return to contribute to the BBU mode. There
are three reasons:

• Wave energy is absorbed because of the material volume resistivity and complex com-
ponents of µ and ǫ.

• Because of the low speed of light in the ferrite, the electromagnetic transit time is much
longer than the period of the transverse mode.

• There is a wide range of possible propagation paths.

In the numerical models, I represented the ferrite as a high impedance medium with values of
µr and ǫr adjusted so that v = c. For example, with physical values µr = 1200 and ǫr = 20,
the material impedance is Z =

√
60/Zo = 7.746Zo. The adjusted values for use in the code

are:

µr =
√
60 = 7.746, ǫr = 1/

√
60 = 0.1291. (9)

To fulfill the condition that waves do not return, I terminated the ferrite with an ideal
absorbing layer. As described in Sect. 13.1 of my book Field Solutions on Computers,
the absorbing layer has µr and ǫr matched to those of the ferrite and an electrical conductivity
given by

σ =
1

Z∆
=

1.0

(7.746)(377.3)(0.005)
= 0.0684 S/m, (10)

where ∆ is the thickness of the layer.
The WaveSim calculation confirmed the features of the model. The first run was set

to make a frequency scan from 50.0 to 100.0 MHz in one-hundred steps. Figure fig:coaxfreq
shows the probe signal compared to that for the open-circuit boundary (a quarter-wave
resonator). As expected, the resonance frequency with the high-impedance ferrite (75.312
MHz) was close to the infinite-impedance result (74.948 MHz). The width of the response
curve contributed by the ferrite was a 11.9 MHz. The corresponding quality factor is Q =
75.312/11.9 = 6.33. The quality factor can also be calculated from total integrals of field
energy and power loss. A WaveSim run in the resonance mode gaves a total field energy in
the vacuum regions if U = 2.11 × 10−9 J and total power dissipated in absorption layer of
P = 0.1639 W. The value imply a quality factor

Q =
2πfU

P
=

2π(75.31× 106)(2.11× 10−9)

0.1639
= 6.09. (11)

I made an additional calculation with an elongated ferrite region. The length had no
effect on the resonant frequency and vacuum region solution. An axial field scan of |E|
confirmed that there was a standing wave in the vacuum region (i.e., varying amplitude)
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Figure 12: Probe response as a function of frequency for the coaxial resonator. Blue: open-
circuit termination. Red: ferrite with Z/Zo = 7.746.

and a pure traveling wave in the ferrite (i.e., fixed amplitude). The Q values implied by
Fig. 12 and Eq. 11 are consistent with the physical model of transmission of the positive-
going resonator wave. The product of the transmission coefficients of Eq. 5 for Z/Zo = 7.46
is TE × TH = 0.405. If D is the cavity length and So is the magnitude of the Poynting
vector of the positive-going wave, then the total energy lost in one period from the quarter
wave resonator is proportional to 4DSo × 0.405. The total energy in the resonator (U) is
proportional to D(2So). An alternate defintion of the quality factor is 2πU/(Energy lost in
one period). By this reasoning, a rough estimate of the quality factor is given by

Q ∼= 2π(2SoD)

4(0.405)So

= 7.75. (12)
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5 Cylindrical cavity with a ferrite boundary

This section describes calculations where the ferrite boundary model is applied to a test
cylindrical cavity (R = 23.5 cm, D = 3.0 cm) to get a sense of the Q values expected in
the DARHT Mod2 cavities. I made an initial test to make sure that the model gave the
correct results in Aether by making a comparison calculation with WaveSim. For this
calculation, I used the circularly-symmetric TM010 mode. The element size was 0.25 cm for
the WaveSim calculation and 0.50 cm for the Aether solution. In both cases, the ferrite
was represented by a layer two elements thick on the outer boundary surrounded by a one-
element-thick absorbing layer. Absorbing layers in Aether must be adjacent to an open
boundary, so I included void elements on the outside. Figure 13 shows the mesh. For the
average thickness of the absorbing layer in the Aether calculation, I multiplied the element
size by the average of cos θ from θ = 0o to 45o. The result was 0.563 cm.

The theoretical resonant frequency for a metal cavity is f010 = 488.30 MHz. With outer
elements set to the metal property, WaveSim returned a value of 488.22 MHz and Aether

487.40 MHz. I also set up calculations with a open-circuit boundary condition (ideal ferrite).
In this case, the radial variation is more complex – there are maxima of the electric field at
the axis and wall. The resonant mode should have a frequency between that of the TM010

and TM020 (1120.8 MHz) modes. I will use the notation TM01.50 to refer to the mode.
The resonant frequencies from WaveSim and Aether were 777.86 MHz and 778.40 MHz
respectively.

For a high (but finite) ferrite impedance, we expect a resonant frequency near that of
the open-boundary solution. With the choice Z/Zo = 7.746, WaveSim returned a resonant
frequency of 777.63 MHz. The values of volume-integrated field energy and power dissipated
in the absorber gave a value Q = 14.87. For comparison, the Aether calculation gave
f01.50 = 773.23 MHz and a quality factor determined from energy and power integrals of
Q = 16.51. The agreement is close considering the relatively coarse meshing of the circular
absorption region in the three-dimensional solution. Figure 14 shows the field pattern of the
Aether calculation. I also made calculations with a higher ferrite impedance, Z/Zo = 20.0.
In this case, the calculated Q values were 37.5 (WaveSim) and 44.73 (Aether). The values
imply that Q is roughly proportional to the ferrite impedance.

We can also infer Q values from the frequency width of the probe responses. Figure 15
shows the Aether results for the open-circuit cavity and a ferrite boundary with impedances
of Z/Zo = 7.746 and 20.0. As in Fig. 3, the full-width at half-maximum for the open-
boundary cavity (no damping) had a non-zero value of 18 MHz, setting an accuracy limit for
estimates of Q. For a rough approximation, we can subtract this width from that of damped
solutions. With this condition, I estimated Q values of 11.6 for Z/Zo = 20.0 and 43 for
Z/Zo = 7.746, consistent with results from the solution integrals.

To conclude the section, I will discuss an Aether calculation of the BBU mode in a
cylindrical cavity with ferrite boundary. With open circuit boundary, we expect to observe
a frequency between the metal-cavity modes f110 = 778.6 MHz and f120 = 1425.5 MHz. I
used the half-cavity model discussed in Sect. 2. The resonant frequency with Z/Zo = 7.746
was 1078.3 MHz. Figure 16 shows the resulting field pattern in the plane z = 0.0. At the
high-impedance boundary, the quantity H was close to zero E had a non-zero value. The net
effect is to compress the field pattern toward the axis compared to the metal-walled cavity;
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Figure 13: Aether mesh for the TM010 mode in a cylindrical cavity with a ferrite boundary.
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Figure 14: Aether calculation of |Ez| for the TM01.50 mode in a cylindrical cavity. Plot in
the plane z = 0.0 cm.
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Figure 15: Probe response forAether resonant mode calculations of the TM01.50 mode. Blue:
open circuit, Green: ferrite impedance Z/Zo = 20.0. Red: ferrite impedance Z/Zo = 7.746.

22



Figure 16: TM1150 mode in a cylindrical cavity with a high-impedance boundary. Plots in
the plane z = 0.0 cm. Top: —E—. Bottom: —H—.
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hence, the higher frequency. The Q value estimated from energy/power volume integrals was
Q = 19.8. With a ferrite impedance of Z/Zo = 20.0, the Q value increased to 52.7. Again,
Q was approximately proportional to Z/Zo.

6 DARHT Mod2 cavity model

After the lengthly preamble, creating a model of the DARHT Mod2 cavity was straight-
forward. Figure 18 shows the mesh for the Aether calculation. As in Sect. 3, I used a
half-plane representation with a metal boundary at y = 0.0 cm and extended beam pipe
apertures terminated with a metal boundaries. The excitation source was located near the
expected point of maximum electric field and carried a current density component jy. I
included a second source at large radius to experiment with a dual drive with a 180o phase
difference. It was not used for the calculations of this report. Most of the parts were turn-
ings, with boundaries described by a set of short vectors that I determined from a cavity
drawing supplied by LANL. The outer region included the exposed ferrite (a layer three
elements thick), an single-element absorbing layer and a void region to set a boundary con-
dition behind the absorber. In the Aether calculation, the insulator had a relative dielectric
constant of ǫr = 2.53 and the transformer oil had ǫr = 2.2. I found solutions for two values
of ferrite impedance, Z/Zo = 7.746 and 20.0. Each solution involved a resonance search and
then a field calculation at the determined frequency. Solution times were longer than the
test examples of previous sections because of the larger solution volume and smaller element
size: 1140 s for the resonant solution and 228 s for the field solution.

Figure 17 shows the probe response in the resonant calculation for Z/Zo = 7.746 and
Figure 19 shows corresponding field distribution in the plane x = 0.0 cm . The clean probe
response and the resemblance to the field distribution of Fig. 10 gives confidence that solution
corresponds to the TM11.50 mode. The effects of the beam pipe and the high-impedance
boundary are consistent with the discussions of Sects. 3 and 5.

Table 1: Solutions for the TM11.50 mode in the DARHT Mod2 cavity.

Z/Zo f1150 Q
7.746 704.8 MHz 42.1
20.000 700.0 MHz 106.7

An interesting result is that the Q values listed in Table 1 are significantly higher than
those for a cylindrical cavity with a ferrite boundary. This is not the result of differences in
the relative absorption area of the ferrite. I verfied that the ratio of ferrite area to cavity
volume for the two configurations was about the same: .085 cm−1 for the cylindrical cavity
and 0.100 cm−1 for DARHT cavity. Rather, the difference is the result of the mode field
morphology. Figure 20 plots the spatial distribution of electromagnetic field-energy density
in the plane x = 0.0 for two configurations. The red lines indicate the surface of the ferrite.
In the case of the DARHT cavity, the ferrite surface is in a backwater with respect to the
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Figure 17: Probe response for the DARHT Mod2 cavity with Z/Zo = 7.746.

mode fields, so the energy flux is low. A favorable implication is that adjustments to the
cavity geometry near the ferrite may have a significant effect on the mode Q.

7 DARHT Mod2A comparison

Figure 21 shows the geometry of the Mod2A DARHT cavity. The main difference from the
Mod2 geometry is the re-entrant area near the face of the ferrite stack (arrow at the right).
There is also the option to include a ferrite damping ring with a wedge shaped cross section
near the vacuum insulator (arrow on the left). The following section discusses the effect of
the damping ring on the BBU mode.

The resulting field patterns were quite similar to those of the Mod2 cavity. Figure 22
shows the computational mesh and the distribution of field energy for the TM01.50 mode.
Again, the energy density is low near the ferrite surface. Table 2 shows a comparison of the
mode characteristics for the two geometries with ferrite impedances of Z/Z0 = 7.746 and
Z/Z0 = 20.0. (Note that the absolute values of field energy and dissipated power are not
significant in a resonant type Aether solution.) There was a small difference in frequency,
about 0.5%. The Q values in the Mod2A cavity were higher because the ferrite face was
farther from the main cavity volume.

Finally, Fig. 23 shows a plot of Bx(0.0, 0.0, z) of the TM01.50 mode for the two cavity
geometries with ferrite impedances of Z/Z0 = 7.746 and 20.0. For the comparison, the
electromagnetic field energy was normalized to 1.0 J. There was a small difference between
the geometries because of difference in the field distributions. The ferrite impedance had no
discernable effect.
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Figure 18: MetaMesh plots of the DARHT Mod2 cavity mesh. Dimensions in cm, cubic
elements with length 0.25 cm. Top: View in the plane x = 0.0 cm. Bottom: view in the
plane z = −5.5 cm.
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Figure 19: Field distribution for the TM01.50 mode in the DARHT Mod2 cavity. Top: |E|.
Bottom: |H|.
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Figure 20: Field energy density distributions, plots in the planeX = 0.0 cm. Top: cylindrical
cavity. Bottom: DARHT Mod2 cavity,
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Figure 21: Mod2A cavity geometry. The arrow on the right indicates the re-entrant region
at the ferrite-stack face. The arrow on the left shows a ferrite damping ring.

Table 2: Comparison of TM01.50 mode characteristics in the Mod2 and Mod2A geometries.

Mod2 cavity

Impedance Field energy Power Frequency Q
Z/Z0 (J) (W) (MHz)
7.746 1.53129× 10−16 1.61481× 10−08 704.75 41.99
20.00 3.88389× 10−16 1.60383× 10−08 699.92 106.50

Mod2A cavity

Impedance Field energy Power Frequency Q
Z/Z0 (J) (W) (MHz)
7.746 1.77437× 10−16 1.58633× 10−08 707.55 49.73
20.00 3.80850× 10−16 1.34234× 10−08 708.94 126.41
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Figure 22: Mod2A cavity modeling, projections in the plane x = 0.0 cm. Top: computational
mesh. Bottom: distribution of field energy density, u.
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Figure 23: Scan of the deflecting magnetic field Bx along the z axis for the two cavity
geometries with a normalized electromagnetic field energy density of 1.0 J. Calculations
were performed for Z/Z0 = 7.746 and 20.0.
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Figure 24: Mesh for the Mod2A cavity with ferrite ring.

8 Mod2A cavity with damping ring

To conclude the series, I added the ferrite wedge to the Mod2A geometry (Fig. 21). As in
previous calculations, I assumed that 1) the ferrite had a relative impedance Z/Z0 = 7.746,
2) the electromagnetic propagation velocity was c and 3) all transmitted wave energy was
absorbed. Figure 24 shows the computational mesh. An absorbing layer and void region
were added at the ferrite-ring boundary to minimize reflected energy. The ring had a strong
effect, raising the resonant frequency from 707.55 MHz to 836.01 MHz. Figure 25, plots of
the distribution of |H| without and with the ring, shows the reason. The ring acts as an
inductive choke on wall current so that the mode energy was confined to a smaller volume.
Also, note how the magnetic field extends farther into the drift tube at the higher frequency.
The ring shields the main ferrite stack from the mode fields. Therefore, the Q value with
the ring is actually higher, 54.43 compared to 49.73.
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Figure 25: Distribution of |H| for the TM01.50 mode in the Mod2A cavity without (top) and
with (bottom) the ferrite ring.
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